FudgeFactor: Syntax-Guided Synthesis for Accurate RTL Error Localization and Correction

Paolo lenne¹

Joint work with Andrew Becker¹, Djordje Maksimovic², David Novo¹, Mohsen Ewaida¹, Andreas Veneris², and Barbara Jobstmann¹

> 1: EPFL, Lausanne, CH 2: University of Toronto, Toronto, CA

Debug Time is Out of Control

Foster, H.: Trends in Functional Verification: a 2014 Industry Study. In Proceedings of the 52nd Annual Design Automation Conference (DAC '15).

Approx. 37% of verification time is debug time.
→ Debug time is approx. 20% of the avg. total project time!

Key Insight I

- Engineers can spend hours debugging, only to find trivial root causes.
- Not an efficient use of engineer time.

If we could automatically fix simple errors, we could save significant debugging time.

Key Insight II

- Some design errors are not modeled well by previous approaches (e.g. "wrong gate").
 - Imagine an erroneous '+' instead of '-': many incorrect/missing gates!
- Many are *syntactically-close* to correct RTL, even if the resulting circuit is *semantically-far*.

Use the *almost-correct* RTL and a model of common errors to synthesize the correct design.

- 1) Build library of common RTL errors: assume simple, common errors.
- 2) Add *possibility* of incorporating suitable fixes for all matched suspected errors.
- 3) Solver finds if some combination actually fixes the error.

Solve*: find which potential fixes actually correct errors *Using Solar-Lezama's CEGIS solver; now we also support Yices

Fault Localization Pre-filter

- We use a commercial tool based on existing localization approach [1] to pre-select areas of the circuit on which to focus.
 - Tool output has too many false-positives.
 - We increase specificity and avoid designers chasing false leads.
- Only apply rule matching and instrumentation on these suspect areas.

[1] A. Smith, A. Veneris, M. F. Ali, A. Viglas.Fault Diagnosis and Logic Debugging Using Boolean Satisfiability. *IEEE TCAD*, October 2005.

Common Error Library

- Extensible library of 'rules' heuristically modelling and correcting typical errors.
- Explicitly modeled by humans (by the tool designers—not circuit designers).
- Mostly based on matching fragments of the Abstract Syntax Tree (AST).
 - Special kind of specification similar to subgraph isomorphism; extra conditions sometimes req'd.
- Unroll sequential circuits to depth necessary.

Example: Error Rule C

Matches:		Allows Option Of:
if()		if()
 if()	\implies	… <mark>else</mark> if(…)
… else		… else
•••		•••

Example: Error Rule G

Matches:

cond? A : B

Allows Option Of:

cond? B : A

Example: Error Rule D

- *—one of:
- Assign
- Statement
- Port connection

Matches:

any identifier in a 'right hand side' usage

z = x + y

 \implies

e.g.

Allows Option Of:

id

any electricallycompatible identifier

z = x + a

1 6

Rules List

Rule	Checker (if the subgraph looks like)	Transformer (insert these options)
Α	Signal indexing operation	Indices and ranges may be shifted to the left or right by one.
в	Incomplete case without default	Signals assigned in case get a default assignment of any compatible signal, or a pure free variable.
С	If If Else assigning the same signal	Allow use of a parallel If Else If Else with the same conditions.
D	Signal in any statement explicitly mentioned in candidate set	Allow referring instead to any compatible signal.
\mathbf{E}	A bitwise comparison operator	Allow comparing with any other bitwise comparison operator instead.
\mathbf{F}	A constant value on right-hand side; not an index/range	Allow using instead any constant value (a pure free variable).
G	A ternary expression	Allow using instead the same ternary expression, but with the condition inverted.

A total of 7 general rules are implemented now, but *nearly* any syntactic change could be modeled.

Rule Application Example

Free variables select which behavior is actually exposed.

Limits of Rule Applicability

- Almost any syntax changes can be modeled.
- Cannot model changes to areas which must be statically determined at synthesis time.
 - "initial" blocks (if anyone cares)
 - "for" generate loop bounds
 - "synopsys translate_off"-style directives

Specification

- Formal specifications not always available.
 - Test benches with millions of vectors are not feasible to use as 'black box' specifications.
- Compromise: use (very) abstract specification.
- Spec. is just one known-failing test vector and two others, to cover other parts of the design.
 - Intuition: syntax guidance \rightarrow less need for exactness.
 - Totally arbitrary, but works well so far.
 - More (and more general) rules may require more precise specification.

Specification II

Potential Pollution

• With so many changes allowed, solution space can be filled with over-complicated solutions.

Potential Pollution

• With so many changes allowed, solution space can be filled with over-complicated solutions.

Avoiding Pollution

- Further constrain the free variables.
- No more than *t* free vars. may be non-zero.
 - I.e., maximum *t* simultaneous corrections.
 - Successively increase this threshold *t* until we find corrections, or exceed a maximum threshold.
 - Simple linear sweep; use binary search if many corrections are allowed.

Final Specification

Not only do the primary outputs (*e* here) have to match, but the number of applied corrections must be below some threshold. This threshold is then swept to find the minimal corrections.

Experimental Methodology

- First three designs are from OpenCores; CPU is from GitHub [2].
- We used the CPU as a rule demonstrator.
 Only a sample of injected errors presented here.
- All other designs use only 'real' bugs from commit history or bugs injected by third party.
 - Not used in any way to develop rules.

[2] https://github.com/jmahler/mips-cpu http://opencores.com/project,divider http://opencores.com/project,aes_core http://opencores.com/project,simple_spi

Experiments

- Multiple buggy versions of four designs:
 - SPI: SPI master controller
 - ~15k AND-Inverter gates after unrolling
 - AES: Pipelined 128-bit AES module
 - ~87k AND-Inverter gates after unrolling
 - Div: Pipelined signed-by-unsigned integer divider with 16-bit dividend and 8-bit divisor
 - ~97k AND-Inverter gates after unrolling
 - CPU: Basic 5-stage pipelined MIPS processor
 - ~35k AND-Inverter gates after unrolling

Example of Corrected Error

 A typical 'copy & paste' error in one version of the SPI design (spi_bug4).

(original)

assign wp_p1 = wp + 2'h2; assign wp_p2 = wp + 2'h2;

(corrected)

assign wp_p1 = wp + 2'h1; assign wp_p2 = wp + 2'h2;

Experimental Results I

Buggy Design	# RTL Changes	Solved?	Fixing Rule(s)	Matched Rules	Total AST Size	# Matched AST Nodes	SLOC
spi_bug1	1	\checkmark	D	ABDEF	2968	20	271
spi_bug2	_	_	_	BD	2964	2	266
spi_bug3	_	_	_	DEF	2968	10	266
spi_bug4	1	\checkmark	\mathbf{F}	ABDF	2968	13	266
aes_bug1	_		_	ADFG	5080	19	467
aes_bug2	1	\checkmark	D	ABDG	5251	33	467
div_bug1	_	_	<u> </u>	ADF	2486	13	163
div_bug2	2	\checkmark	DD	AD	2478	8	165
div_bug3	—	—	—	ADF	2486	13	165
div_bug4	1	\checkmark	D	ADF	2502	10	165
div_bug5	—	—	—	ADF	2516	15	168
div_bug6	—	—	—	ADF	2528	20	165
div_bug7	2	\checkmark	DD	ADF	2510	12	165
cpu_bug1	1	\checkmark	В	BDG	3842	4	530
cpu_bug2	1	\checkmark	\mathbf{C}	CDEF	3846	5	531

8/15 corrected properly; signal replacement rule by far most common.

Example of Not Corrected Error

- Some missing functionality in part of the key expansion in AES (aes_bug1).
- Note: not *fundamentally* uncorrectable.

```
(original)
always @(posedge clk)
w[0] <= #1 kld?
        key[127:96] :
        w[0] ^ rcon;
       (NOT corrected)
always @(posedge clk)
w[0] <= #1 kld?
        key[127:96] :
        w[0] ^ subword ^ rcon;
```

Experimental Results II

All answered in <10min. This is why we pre-filter!							
Buggy Design	# Free Var. Bits	Total Solver Time (s)	# Golden Gates	Unroll Frames	Blowup		
<pre>spi_bug1 spi_bug2 spi_bug3 spi_bug4 aes_bug1 aes_bug2 div_bug1 div_bug2 div_bug3 div_bug4 div_bug5 div_bug6</pre>	$92\\8\\35\\65\\373\\62\\33\\20\\30\\26\\37\\32$	$\begin{array}{c} 1.90 \\ 1.69 \\ 2.23 \\ 1.66 \\ 18.71 \\ 517.40 \\ 32.28 \\ 71.47 \\ 21.82 \\ 78.90 \\ 49.05 \\ 17.75 \end{array}$	$14468 \\ 14468 \\ 14468 \\ 14468 \\ 86878 \\ 86878 \\ 96767 \\ 9676$	$20 \\ 20 \\ 20 \\ 20 \\ 6 \\ 6 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\$	$\begin{array}{c} 2.94 x \\ 1.20 x \\ 1.90 x \\ 2.14 x \\ 1.07 x \\ 1.29 x \\ 2.30 x \\ 2.12 x \\ 2.28 x \\ 2.28 x \\ 2.24 x \\ 3.20 x \\ 1.99 x \end{array}$		
div_bug7	30	101.46	96767	48	3.15x		
cpu_bug1 cpu_bug2	$\frac{12}{46}$	$87.53 \\ 60.05$	$34294 \\ 34294$	$\begin{array}{c} 15 \\ 15 \end{array}$	2.28x 2.56x		

A New Help for Debugging

A New Help for Debugging

[...]

```
always @(state)
  begin
     case (state)
       zero:
         out = 4'b0000;
       one:
         out = 4'b0001;
       two:
         out = 4'b0010;
       three:
                                                 default:
         out = 4'b0100;
     endcase
                                                   out = 4'b0000;
  end
always @(posedge clk or posedge reset)
  begin
     if (reset)
       state = zero;
     else
       case (state)
         zero:
                                             one;
           state
                    three
         one:
           if (in)
             state = zero;
           else
             state = two:
         two:
                                             three;
           state
                    one;
         three:
           state = zero;
       endcase
  end
```

[...]

Conclusions

- All solutions found were actual, proper fixes.
 - Not guaranteed to be true!
 - Parameters (e.g. no. of traces) can be tweaked.
 - Needs more thorough investigation.
- Healthy proportion of designs were corrected.
- Objectively reasonable run times.
 - Run this *first* upon error discovery; debug manually in parallel. No time wasted.

A. Becker, D. Maksimović, D. Novo, M. Owaida, A. Veneris, B. Jobstmann, and P. Ienne. FudgeFactor: Syntax-guided synthesis for accurate RTL error localization and correction. In *Proceedings of the 11th Haifa Verification Conference*, pages 259-275, Haifa, Israel, November 2015.