
FudgeFactor: Syntax-Guided
Synthesis for Accurate RTL Error

Localization and Correction
Paolo Ienne1

Joint work with Andrew Becker1, Djordje Maksimovic2,
David Novo1, Mohsen Ewaida1,

Andreas Veneris2, and Barbara Jobstmann1

1: EPFL, Lausanne, CH
2: University of Toronto, Toronto, CA

2

Debug Time is Out of Control

Foster, H.: Trends in Functional Verification: a 2014 Industry Study. In Proceedings of the 52nd Annual Design Automation Conference (DAC ‘15).

Percentage of Project Time Spent in Verification

Approx. 37% of verification time is debug time.
 Debug time is approx. 20% of the avg. total project time!

3

If we could automatically fix simple errors,
we could save significant debugging time.

Key Insight I

• Engineers can spend hours debugging,
only to find trivial root causes.

• Not an efficient use of engineer time.

4

Use the almost-correct RTL and a model of
common errors to synthesize the correct design.

Key Insight II

• Some design errors are not modeled well
by previous approaches (e.g. “wrong gate”).
• Imagine an erroneous ‘+’ instead of ‘−’:

many incorrect/missing gates!

• Many are syntactically-close to correct RTL,
even if the resulting circuit is semantically-far.

5

3,000m Overview
1) Build library of common RTL errors: assume simple, common errors.
2) Add possibility of incorporating suitable fixes for all matched suspected errors.
3) Solver finds if some combination actually fixes the error.

Buggy circuit design and library of
common RTL errors provided to

software suite

Software tools determine suspicious
RTL, apply matching error rules, and

find fixing combination(s)

Designer gets back meaningful
error diagnosis exactly describing

the problem and necessary fix

rtl/alu.v@29.11
Signal ‘b’ should be ‘a’

rtl/alu.v@29.13
Signal ‘a’ should be ‘b’

l1: e := x + y
(l1,1): e := x + y
(l1,2): e := x – y

l2: e := x & y
(l2,1): e := x & y
(l2,2): e := x | y

…

Library

RTL Source

…
else if(op == OP_SH)
o=shift(b,a[5:0]);

…

Problem Formulation

QBF Solver

(instrumentation)
(interpretation)

6

1,500m Overview

CELBuggy
Circuit

Traces

Pre-filter Instrument Generate
Problem Solve

7

1,500m Overview

CELBuggy
Circuit

Traces

Pre-filter Instrument Generate
Problem Solve

Start with a buggy circuit and erroneous test vectors

8

1,500m Overview

CELBuggy
Circuit

Traces

Pre-filter Instrument Generate
Problem Solve

Start with a buggy circuit and erroneous test vectorsFind suspect locations and pre-filter

9

Use “common error library” to add possible fixes

1,500m Overview

CELBuggy
Circuit

Traces

Pre-filter Instrument Generate
Problem Solve

1
0

Use traces to generate a problem instance

1,500m Overview

CELBuggy
Circuit

Traces

Pre-filter Instrument Generate
Problem Solve

1
1

1,500m Overview

CELBuggy
Circuit

Traces

Pre-filter Instrument Generate
Problem Solve

Solve*: find which potential fixes actually correct errors
*Using Solar-Lezama’s CEGIS solver; now we also support Yices

1
2

Fault Localization Pre-filter

• We use a commercial tool based on existing
localization approach [1] to pre-select areas of
the circuit on which to focus.
– Tool output has too many false-positives.
– We increase specificity and avoid

designers chasing false leads.

• Only apply rule matching and instrumentation
on these suspect areas.

[1] A. Smith, A. Veneris, M. F. Ali, A. Viglas.
Fault Diagnosis and Logic Debugging Using Boolean Satisfiability. IEEE TCAD, October 2005.

1
3

Common Error Library

• Extensible library of ‘rules’ heuristically
modelling and correcting typical errors.

• Explicitly modeled by humans (by the tool
designers—not circuit designers).

• Mostly based on matching fragments of the
Abstract Syntax Tree (AST).
– Special kind of specification similar to subgraph

isomorphism; extra conditions sometimes req’d.

• Unroll sequential circuits to depth necessary.

1
4

Example: Error Rule C
block

ifif

elsecond elsecond

(doesn’t exist)

Matches:

if(…)
…

if(…)
…

else
…

Allows Option Of:

if(…)
…

else if(…)
…

else
…

1
5

Example: Error Rule G

Matches:

cond? A : B

Allows Option Of:

cond? B : A

ternary

cond exp. Bexp. A

1
6

Example: Error Rule D
*

id

Matches:

any identifier in a
‘right hand side’ usage

Allows Option Of:

any electrically-
compatible identifier

…
*—one of:
• Assign
• Statement
• Port connection

e.g.z = x + y z = x + a

1
7

Rules List

A total of 7 general rules are implemented now,
but nearly any syntactic change could be modeled.

1
8

Rule Application Example

• Original
“x | y”
might be:
“x | y” or
“x & y” or
“x ^ y” or
“x ~| y”

• Free variables select which behavior is actually
exposed.

1
9

Limits of Rule Applicability

• Almost any syntax changes can be modeled.
• Cannot model changes to areas which must

be statically determined at synthesis time.
– “initial” blocks (if anyone cares)
– “for” generate loop bounds
– “synopsys translate_off”-style directives

2
0

Specification

• Formal specifications not always available.
– Test benches with millions of vectors are not feasible

to use as ‘black box’ specifications.

• Compromise: use (very) abstract specification.
• Spec. is just one known-failing test vector and

two others, to cover other parts of the design.
– Intuition: syntax guidance  less need for exactness.
– Totally arbitrary, but works well so far.
– More (and more general) rules may require more

precise specification.

2
1

Specification II

2
2

Potential Pollution

• With so many changes allowed, solution space
can be filled with over-complicated solutions.

if(A == 1’b0)
Z = X;

else
Z = Y;

if(A == 1’b0)
Z = E;

else
Z = F;

(original) (proper fix)

2 changes

2
3

if(A != 1’b1)
Z = E;

else
Z = F;

(pollution)

4 changes

Potential Pollution

• With so many changes allowed, solution space
can be filled with over-complicated solutions.

if(A == 1’b0)
Z = X;

else
Z = Y;

(original)

2
4

Avoiding Pollution

• Further constrain the free variables.
• No more than t free vars. may be non-zero.

– I.e., maximum t simultaneous corrections.
– Successively increase this threshold t until we

find corrections, or exceed a maximum
threshold.

• Simple linear sweep; use binary search if many
corrections are allowed.

2
5

Final Specification

Not only do the primary outputs (e here) have to match, but the
number of applied corrections must be below some threshold.

This threshold is then swept to find the minimal corrections.

2
6

Experimental Methodology

• First three designs are from OpenCores;
CPU is from GitHub [2].

• We used the CPU as a rule demonstrator.
– Only a sample of injected errors presented here.

• All other designs use only ‘real’ bugs from
commit history or bugs injected by third party.
– Not used in any way to develop rules.

[2] https://github.com/jmahler/mips-cpu
http://opencores.com/project,divider
http://opencores.com/project,aes_core
http://opencores.com/project,simple_spi

2
7

Experiments

• Multiple buggy versions of four designs:
– SPI: SPI master controller

• ~15k AND-Inverter gates after unrolling

– AES: Pipelined 128-bit AES module
• ~87k AND-Inverter gates after unrolling

– Div: Pipelined signed-by-unsigned integer divider
with 16-bit dividend and 8-bit divisor

• ~97k AND-Inverter gates after unrolling

– CPU: Basic 5-stage pipelined MIPS processor
• ~35k AND-Inverter gates after unrolling

2
8

Example of Corrected Error

• A typical ‘copy & paste’ error in one version
of the SPI design (spi_bug4).

(original)
assign wp_p1 = wp + 2’h2;
assign wp_p2 = wp + 2’h2;

(corrected)
assign wp_p1 = wp + 2’h1;
assign wp_p2 = wp + 2’h2;

2
9

Experimental Results I

8/15 corrected properly; signal replacement rule by far most common.

3
0

Example of Not Corrected Error
• Some missing functionality in part of the key

expansion in AES (aes_bug1).
• Note: not fundamentally uncorrectable.

always @(posedge clk)
w[0] <= #1 kld?

key[127:96] :
w[0] ^ rcon;

(original)

always @(posedge clk)
w[0] <= #1 kld?

key[127:96] :
w[0] ^ subword ^ rcon;

(NOT corrected)

3
1

Experimental Results II
All answered in <10min. This is why we pre-filter!

3
2

A New Help for Debugging

3
3

A New Help for Debugging

3
4

Conclusions
• All solutions found were actual, proper fixes.

– Not guaranteed to be true!
– Parameters (e.g. no. of traces) can be tweaked.
– Needs more thorough investigation.

• Healthy proportion of designs were corrected.
• Objectively reasonable run times.

– Run this first upon error discovery; debug manually
in parallel. No time wasted.

A. Becker, D. Maksimović, D. Novo, M. Owaida, A. Veneris, B. Jobstmann, and P. Ienne.
FudgeFactor: Syntax-guided synthesis for accurate RTL error localization and correction.

In Proceedings of the 11th Haifa Verification Conference, pages 259-275, Haifa, Israel, November 2015.

	FudgeFactor: Syntax-Guided Synthesis for Accurate RTL Error Localization and Correction
	Debug Time is Out of Control
	Key Insight I
	Key Insight II
	3,000m Overview
	1,500m Overview
	1,500m Overview
	1,500m Overview
	1,500m Overview
	1,500m Overview
	1,500m Overview
	Fault Localization Pre-filter
	Common Error Library
	Example: Error Rule C
	Example: Error Rule G
	Example: Error Rule D
	Rules List
	Rule Application Example
	Limits of Rule Applicability
	Specification
	Specification II
	Potential Pollution
	Potential Pollution
	Avoiding Pollution
	Final Specification
	Experimental Methodology
	Experiments
	Example of Corrected Error
	Experimental Results I
	Example of Not Corrected Error
	Experimental Results II
	A New Help for Debugging
	A New Help for Debugging
	Conclusions

