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Debug Time is Out of Control

Foster, H.: Trends in Functional Verification: a 2014 Industry Study. In Proceedings of the 52nd Annual Design Automation Conference (DAC ‘15).

Percentage of Project Time Spent in Verification

Approx. 37% of verification time is debug time.
 Debug time is approx. 20% of the avg. total project time! 
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If we could automatically fix simple errors,
we could save significant debugging time.

Key Insight I

• Engineers can spend hours debugging, 
only to find trivial root causes.

• Not an efficient use of engineer time.
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Use the almost-correct RTL and a model of
common errors to synthesize the correct design.

Key Insight II

• Some design errors are not modeled well
by previous approaches (e.g. “wrong gate”).
• Imagine an erroneous ‘+’ instead of ‘−’:

many incorrect/missing gates!

• Many are syntactically-close to correct RTL, 
even if the resulting circuit is semantically-far.
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3,000m Overview
1) Build library of common RTL errors: assume simple, common errors.
2) Add possibility of incorporating suitable fixes for all matched suspected errors.
3) Solver finds if some combination actually fixes the error.

Buggy circuit design and library of 
common RTL errors provided to 

software suite

Software  tools determine suspicious 
RTL, apply matching error rules, and 

find fixing combination(s)

Designer gets back meaningful 
error diagnosis exactly describing 

the problem and necessary fix

rtl/alu.v@29.11
Signal ‘b’ should be ‘a’

rtl/alu.v@29.13
Signal ‘a’ should be ‘b’

l1: e := x + y
(l1,1): e := x + y
(l1,2): e := x – y

l2: e := x & y
(l2,1): e := x & y
(l2,2): e := x | y

…

Library

RTL Source

…
else if(op == OP_SH)
o=shift(b,a[5:0]);

…

Problem Formulation

QBF Solver

(instrumentation)
(interpretation)
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1,500m Overview

CELBuggy
Circuit

Traces

Pre-filter Instrument Generate
Problem Solve
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1,500m Overview

CELBuggy
Circuit

Traces

Pre-filter Instrument Generate
Problem Solve

Start with a buggy circuit and erroneous test vectors
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1,500m Overview

CELBuggy
Circuit

Traces

Pre-filter Instrument Generate
Problem Solve

Start with a buggy circuit and erroneous test vectorsFind suspect locations and pre-filter
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Use “common error library” to add possible fixes

1,500m Overview

CELBuggy
Circuit

Traces

Pre-filter Instrument Generate
Problem Solve
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Use traces to generate a problem instance

1,500m Overview

CELBuggy
Circuit

Traces

Pre-filter Instrument Generate
Problem Solve
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1,500m Overview

CELBuggy
Circuit

Traces

Pre-filter Instrument Generate
Problem Solve

Solve*: find which potential fixes actually correct errors
*Using Solar-Lezama’s CEGIS solver; now we also support Yices
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Fault Localization Pre-filter

• We use a commercial tool based on existing 
localization approach [1] to pre-select areas of 
the circuit on which to focus.
– Tool output has too many false-positives.
– We increase specificity and avoid

designers chasing false leads.

• Only apply rule matching and instrumentation 
on these suspect areas.

[1] A. Smith, A. Veneris, M. F. Ali, A. Viglas.
Fault Diagnosis and Logic Debugging Using Boolean Satisfiability. IEEE TCAD, October 2005.



1
3

Common Error Library

• Extensible library of ‘rules’ heuristically 
modelling and correcting typical errors.

• Explicitly modeled by humans (by the tool 
designers—not circuit designers).

• Mostly based on matching fragments of the 
Abstract Syntax Tree (AST).
– Special kind of specification similar to subgraph 

isomorphism; extra conditions sometimes req’d.

• Unroll sequential circuits to depth necessary.
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Example: Error Rule C
block

ifif

elsecond elsecond

(doesn’t exist)

Matches:

if(…)
…

if(…)
…

else
…

Allows Option Of:

if(…)
…

else if(…)
…

else
…
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Example: Error Rule G

Matches:

cond? A : B

Allows Option Of:

cond? B : A

ternary

cond exp. Bexp. A
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Example: Error Rule D
*

id

Matches:

any identifier in a
‘right hand side’ usage

Allows Option Of:

any electrically-
compatible identifier

…
*—one of:
• Assign
• Statement
• Port connection

e.g.z = x + y z = x + a
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Rules List

A total of 7 general rules are implemented now,
but nearly any syntactic change could be modeled.
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Rule Application Example

• Original
“x | y”
might be:
“x | y” or
“x & y” or
“x ^ y” or
“x ~| y”

• Free variables select which behavior is actually 
exposed.
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Limits of Rule Applicability

• Almost any syntax changes can be modeled.
• Cannot model changes to areas which must

be statically determined at synthesis time.
– “initial” blocks (if anyone cares)
– “for” generate loop bounds
– “synopsys translate_off”-style directives
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Specification

• Formal specifications not always available.
– Test benches with millions of vectors are not feasible 

to use as ‘black box’ specifications.

• Compromise: use (very) abstract specification. 
• Spec. is just one known-failing test vector and 

two others, to cover other parts of the design.
– Intuition: syntax guidance  less need for exactness. 
– Totally arbitrary, but works well so far.
– More (and more general) rules may require more 

precise specification.
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Specification II
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Potential Pollution

• With so many changes allowed, solution space 
can be filled with over-complicated solutions.

if(A == 1’b0)
Z = X;

else 
Z = Y;

if(A == 1’b0)
Z = E;

else 
Z = F;

(original) (proper fix)

2 changes
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if(A != 1’b1)
Z = E;

else 
Z = F;

(pollution)

4 changes

Potential Pollution

• With so many changes allowed, solution space 
can be filled with over-complicated solutions.

if(A == 1’b0)
Z = X;

else 
Z = Y;

(original)
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Avoiding Pollution

• Further constrain the free variables.
• No more than t free vars. may be non-zero.

– I.e., maximum t simultaneous corrections.
– Successively increase this threshold t until we 

find corrections, or exceed a maximum 
threshold.

• Simple linear sweep; use binary search if many 
corrections are allowed.
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Final Specification

Not only do the primary outputs (e here) have to match, but the 
number of applied corrections must be below some threshold.

This threshold is then swept to find the minimal corrections.
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Experimental Methodology

• First three designs are from OpenCores;
CPU is from GitHub [2].

• We used the CPU as a rule demonstrator.
– Only a sample of injected errors presented here.

• All other designs use only ‘real’ bugs from 
commit history or bugs injected by third party.
– Not used in any way to develop rules.

[2] https://github.com/jmahler/mips-cpu
http://opencores.com/project,divider
http://opencores.com/project,aes_core
http://opencores.com/project,simple_spi
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Experiments

• Multiple buggy versions of four designs:
– SPI: SPI master controller

• ~15k AND-Inverter gates after unrolling 

– AES: Pipelined 128-bit AES module
• ~87k AND-Inverter gates after unrolling

– Div: Pipelined signed-by-unsigned integer divider 
with 16-bit dividend and 8-bit divisor

• ~97k AND-Inverter gates after unrolling

– CPU: Basic 5-stage pipelined MIPS processor
• ~35k AND-Inverter gates after unrolling
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Example of Corrected Error

• A typical ‘copy & paste’ error in one version
of the SPI design (spi_bug4).

(original)
assign wp_p1 = wp + 2’h2;
assign wp_p2 = wp + 2’h2;

(corrected)
assign wp_p1 = wp + 2’h1;
assign wp_p2 = wp + 2’h2;
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Experimental Results I

8/15 corrected properly; signal replacement rule by far most common.
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Example of Not Corrected Error
• Some missing functionality in part of the key 

expansion in AES (aes_bug1).
• Note: not fundamentally uncorrectable.

always @(posedge clk)
w[0] <= #1 kld?

key[127:96] :
w[0] ^ rcon;

(original)

always @(posedge clk)
w[0] <= #1 kld?

key[127:96] :
w[0] ^ subword ^ rcon;

(NOT corrected)
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Experimental Results II
All answered in <10min. This is why we pre-filter!
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A New Help for Debugging
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A New Help for Debugging
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Conclusions
• All solutions found were actual, proper fixes.

– Not guaranteed to be true!
– Parameters (e.g. no. of traces) can be tweaked.
– Needs more thorough investigation.

• Healthy proportion of designs were corrected.
• Objectively reasonable run times.

– Run this first upon error discovery; debug manually 
in parallel. No time wasted.

A. Becker, D. Maksimović, D. Novo, M. Owaida, A. Veneris, B. Jobstmann, and P. Ienne. 
FudgeFactor: Syntax-guided synthesis for accurate RTL error localization and correction. 

In Proceedings of the 11th Haifa Verification Conference, pages 259-275, Haifa, Israel, November 2015.
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