FudgeFactor: Syntax-Guided
Synthesis for Accurate RTL Error
Localization and Correction

Paolo lennel

Joint work with Andrew Becker?, Djordje Maksimovic?,
David Novol, Mohsen Ewaidal,
Andreas Veneris2, and Barbara Jobstmann?

1: EPFL, Lausanne, CH

2: University of Toronto, Toronto, CA

Debug Time is Out of Control

— 2007: Averagi: 46%

2012: Averagi:56%
5% 2014: Averag:57%

205

Design Projects

196-20% 213%-30% 313%6-40% 41%-50% 51%6-60% 61%70% 71%-80% »80%
Percentage of Project Time Spent in Verification

Foster, H.: Trends in Functional Verification: a 2014 Industry Study. In Proceedings of the 52" Annual Design Automation Conference (DAC ‘15).

Approx. 37% of verification time is debug time.
— Debug time is approx. 20% of the avg. total project time!

Key Insight |

 Engineers can spend hours debugging,
only to find trivial root causes.

* Not an efficient use of engineer time.

If we could automatically fix simple errors,
we could save significant debugging time.

Key Insight Il

e Some design errors are not modeled well

by previous approaches (e.g. “wrong gate”).

* Imagine an erroneous ‘+’ instead of -’:
many incorrect/missing gates!

e Many are syntactically-close to correct RTL,

even if the resulting circuit is semantically-far.

\.

Use the almost-correct RTL and a model of
common errors to synthesize the correct design.

J

3,000m Overview

1) Build library of common RTL errors: assume simple, common errors.
2) Add possibility of incorporating suitable fixes for all matched suspected errors.
3) Solver finds if some combination actually fixes the error.

lire:=x+y Library
(I.1):e=x+y
(I ,): e=x-y
LLye:=x&y Problem Formulation
(I,,):e:=x&y
(I,):e:=x]y

rtl/alu.v@29.11
Signal ‘b’ should be ‘&’

(interpretation)

rtl/alu.v@29.13
Signal ‘a’ should be ‘b’

(instrumentation)

else 1f(op == OP_SH)
o=shift(b,a[5:0]); [QBF Solver J
RTL Source
Buggy circuit design and library of Software tools determine suspicious Designer gets back meaningful
common RTL errors provided to RTL, apply matching error rules, and error diagnosis exactly describing

software suite find fixing combination(s) the problem and necessary fix

1,500m Overview

>
Buggy CEL
Circuit
Pre-filter Instrument SEEELE Solve
Problem
iy A

B

1,500m Overview

>
-)
Buggy CEL
Circuit
Pre-filter Instrument SEEELE Solve
Problem
iy A
| I
EL
_ J
()

Start with a buggy circuit and erroneous test vectors

1,500m Overview

>
Buggy CEL
Circuit
\
Pre-filter - Instrument G Solve
Problem
I_H y T
EL
(N

Find suspect locations and pre-filter

1,500m Overview

CEL
v N
. Generate
Pre-filter Instrument Solve
Problem
A y,
| I
EL

()

Buggy
Circuit

Use “common error library” to add possible fixes

1,500m Overview

>
Buggy CEL
Circuit
~
Pre-filter Instrument SEEELE Solve
Problem
) A , S
| I
EL
()

Use traces to generate a problem instance

1,500m Overview

Buggy CEL

Circuit

. Generate
Pre-filter]— —)[InstrumentH Solve

Problem
))

—,

B

()

Solve*: find which potential fixes actually correct errors

*Using Solar-Lezama’s CEGIS solver; now we also support Yices
\ J

Fault Localization Pre-filter

e We use a commercial tool based on existing
localization approach [1] to pre-select areas of
the circuit on which to focus.

— Tool output has too many false-positives.
— We increase specificity and avoid
designers chasing false leads.

 Only apply rule matching and instrumentation
on these suspect areas.

[1] A. Smith, A. Veneris, M. F. Ali, A. Viglas.
Fault Diagnosis and Logic Debugging Using Boolean Satisfiability. IEEE TCAD, October 2005.

Common Error Library

Extensible library of ‘rules’ heuristically
modelling and correcting typical errors.

Explicitly modeled by humans (by the tool
designers—not circuit designers).

Mostly based on matching fragments of the
Abstract Syntax Tree (AST).

— Special kind of specification similar to subgraph
isomorphism; extra conditions sometimes req’d.

Unroll sequential circuits to depth necessary.

Example: Error Rule C

(doesn’t exist)

Matches: Allows Option Of:
17C.) 17C.)
i () —> clse if(.)

else else

Example: Error Rule G

Ceond > Cownd Cews >

Matches: Allows Option Of:

—

cond? A : B cond? B - A

Example: Error Rule D

*—one of: q

* Assign
e Statement
* Port connection i
Matches: Allows Option Of:
any identifier in a |:> any electrically-
‘right hand side’ usage compatible identifier

Z=X+Yy e.g. Z = X + a

Rules List

Rule Checker (if the subgraph looks like...) Transformer (insert these options...)

A Signal indexing operation Indices and ranges may be shifted to
the left or right by one.
B Incomplete case without default Signals assigned in case get a default assignment
of any compatible signal, or a pure free variable.
C If ... If ... Else assigning Allow use of a parallel If ... Else If ... Else
the same signal with the same conditions.
D Signal in any statement explicitly Allow referring instead to
mentioned in candidate set any compatible signal.
E A bitwise comparison operator Allow comparing with any other
bitwise comparison operator instead.
F A constant value on right-hand side; Allow using instead any
not an index/range constant value (a pure free variable).
G A ternary expression Allow using instead the same ternary

expression, but with the condition inverted.

A total of 7 general rules are implemented now,
but nearly any syntactic change could be modeled.

Rule Application Example

Xy
e Original (I
oy IET| Ty
might be: * 1y - ?
“Xx | y’or ‘
“X & y”or SR
HX /N\ y” or / / / /
“x¢ ~| y” Free 7 \\0 1 2 3/Instrumented

variable
) rule

* Free variables select which behavior is actually
exposed.

Limits of Rule Applicability

 Almost any syntax changes can be modeled.

e Cannot model changes to areas which must
be statically determined at synthesis time.

|II

— “initial” blocks (if anyone cares)
— “for” generate loop bounds

— “synopsys translate_off”-style directives

Specification

 Formal specifications not always available.

— Test benches with millions of vectors are not feasible
to use as ‘black box’ specifications.

e Compromise: use (very) abstract specification.

e Spec. is just one known-failing test vector and
two others, to cover other parts of the design.
— Intuition: syntax guidance - less need for exactness.

— Totally arbitrary, but works well so far.

— More (and more general) rules may require more
precise specification.

Specification |l

Primary Inputs

Free variables

{ A !’
' \ Y

Test Vector CAM

-~

-

Test Vector I | Vector O
Instrumented] 0
Buggy Circuit 0 0
In Oy
Primary Outputs Golden Outputs M,
yi Vi

=l ,

Potential Pollution

 With so many changes allowed, solution space
can be filled with over-complicated solutions.

(original) (proper fix)
if(A == 1°b0) if(A == 1°b0)
/ = X; / = E;
else — else
Z = Y; Z = F;

2 changes

Potential Pollution

 With so many changes allowed, solution space
can be filled with over-complicated solutions.

(original) (pollution)
1IT(A == 1°b0) 1IT(A 1= 1°bl)
/ = X; / = E;
else E:::$ else
Z = Y; Z = F;

4 changes

Avoiding Pollution

e Further constrain the free variables.

e No more than t free vars. may be non-zero.
— l.e., maximum t simultaneous corrections.

— Successively increase this threshold t until we
find corrections, or exceed a maximum
threshold.

e Simple linear sweep; use binary search if many
corrections are allowed.

Final Specification

threshold Xy
1 ||
U Z
w tj x| v
primary \—‘
outputs max rules \d’ /
check check
Free 71 0O 1 2 3
¢ variable qj J(Instrumented
rule
SAT isCorrected e

(Not only do the primary outputs (e here) have to match, but the
number of applied corrections must be below some threshold.
This threshold is then swept to find the minimal corrections.

- J

Experimental Methodology

e First three designs are from OpenCores;
CPU is from GitHub [2].

 We used the CPU as a rule demonstrator.
— Only a sample of injected errors presented here.

e All other designs use only ‘real’ bugs from
commit history or bugs injected by third party.

— Not used in any way to develop rules.

[2] https://github.com/jmahler/mips-cpu
http://opencores.com/project,divider
http://opencores.com/project,aes_core
http://opencores.com/project,simple_spi

Experiments

 Multiple buggy versions of four designs:

— SPI: SPI master controller

e ~15k AND-Inverter gates after unrolling

— AES: Pipelined 128-bit AES module
e 87k AND-Inverter gates after unrolling
— Div: Pipelined signed-by-unsigned integer divider
with 16-bit dividend and 8-bit divisor
e ~97k AND-Inverter gates after unrolling

— CPU: Basic 5-stage pipelined MIPS processor
e ~35k AND-Inverter gates after unrolling

Example of Corrected Error

e Atypical ‘copy & paste’ error in one version
of the SPI design (spi_bug4).

(original)
assign wp_pl = wp + 27h2;
assign wp _p2 = wp + 27h2;

(corrected)
assign wp pl = wp + 27hl;
assign wp _p2 = wp + 27h2;

Experimental Results |

Buggy =+ R1L Fixing Matched Total AST +# Matched

Design Changes Solved? Rule(s) Rules Size AST Nodes SLOC
spi-bugl 1 v D ABDEF 2968 20 271
spi_bug2 BD 2964 2 266
spi-bug3 DEF 2968 10 266
spi_bugs 1 J F ABDF 2068 13 266
aes_bugl — — — ADFG 5080 19 467
aes_bug?2 1 v D ABDG 5251 33 467
div_bugl - - — ADF 2486 13 163
div_bug?2 2 v DD AD 2478 8 165
div_bug3 ADF 2486 13 165
div_bug4 1 v D ADF 2502 10 165
div_bugb = — = ADF 2516 15 168
div_bugb — — — ADF 2528 20 165
div_bug7 2 v DD ADF 2510 12 165
cpu-bugl 1 v B BDG 3842 4 530
cpu_bug?2 1 v C CDEF 3846 5 531

8/15 corrected properly; signal replacement rule by far most common.

Example of Not Corrected Error

e Some missing functionality in part of the key
expansion in AES (aes bugl).

 Note: not fundamentally uncorrectable.

(original)
always @(posedge clk)
w[O0] <= #1 kld?

key[127:96] :
w[O0] ™ rcon;

(NOT corrected)
always @(posedge clk)
w[0] <= #1 kld?

key[127:96] -

w[O0] ™ subword ” rcon;

Experimental Results Il

[All answered in <10min.] [This is why we pre-filter!]

Buggy # Free Var. [Total Solver § # Golden Unroll

Design Bits Time (s) Gates Frames | Blowup
spi-bugl 92 1.90 14468 20 2.94x
spi_bug?2 8 1.69 14468 20 1.20x
spi_bug3 35 2.23 14468 20 1.90x
spi-bugé 65 1.66 14468 20 2.14x
aes_bugl 373 18.71 86878 6 1.07x
aes_bug?2 62 517.40 36878 6 1.29x
div_bugl 33 32.28 96767 48 2.30x
div_bug?2 20 71.47 96767 48 2.12x
div_bug3 30 21.82 96767 48 2.28x
div_bugéd 26 78.90 96767 48 2.24x
div_bugb 37 49.05 96767 48 3.20x
div_bugé 32 17.7T5 96767 48 1.99x

div_bug7 30 101.46 96767 48 3.15x

cpu-bugil 12 87.53 34294 15 2.28x
cpu-bug?2 46 60.05 34294 15 2.56x

1 EEOBE

)

A New Help for Debugging

Fsa

= =
T o 1 - (—
e = B | ——
1 |
[L]
 —
p—
-
— =5
= - :
. s =
| .
—————
S]
-
H T ==
| =
i I ke I =
H RiE= > [> ™
= |
BeiHERE | I -
el = 22
- -
= B = B |
;,:._,'P‘ | 1ll- ;,:._,'Pl — e S -
it I
| |

A New Help for Debugging

always @(=tate)

begin
case (=state)
zZero:
out = 4'b0000;
one:
out = 4'b0001;
twWo:
out = 4'b0010;
three
out = 4'b0100; default:
endcaze > out = 4'b0000;
end

always @(pozedge clk or pozedge reset)
begin
if (res=set)
state = zZero;
else

case (=state)

zZero:
state three; > one;
one:

if (in)
state = zZero;
el=e
state = two;
TwWo !
state @ =P three;
three:
state = zZero;
endcase

Conclusions

e All solutions found were actual, proper fixes.

— Not guaranteed to be true!
— Parameters (e.g. no. of traces) can be tweaked.
— Needs more thorough investigation.

Healthy proportion of designs were corrected.

Objectively reasonable run times.

— Run this first upon error discovery; debug manually
in parallel. No time wasted.

A. Becker, D. Maksimovi¢, D. Novo, M. Owaida, A. Veneris, B. Jobstmann, and P. lenne.
FudgeFactor: Syntax-guided synthesis for accurate RTL error localization and correction.
In Proceedings of the 11th Haifa Verification Conference, pages 259-275, Haifa, Israel, November 2015.

	FudgeFactor: Syntax-Guided Synthesis for Accurate RTL Error Localization and Correction
	Debug Time is Out of Control
	Key Insight I
	Key Insight II
	3,000m Overview
	1,500m Overview
	1,500m Overview
	1,500m Overview
	1,500m Overview
	1,500m Overview
	1,500m Overview
	Fault Localization Pre-filter
	Common Error Library
	Example: Error Rule C
	Example: Error Rule G
	Example: Error Rule D
	Rules List
	Rule Application Example
	Limits of Rule Applicability
	Specification
	Specification II
	Potential Pollution
	Potential Pollution
	Avoiding Pollution
	Final Specification
	Experimental Methodology
	Experiments
	Example of Corrected Error
	Experimental Results I
	Example of Not Corrected Error
	Experimental Results II
	A New Help for Debugging
	A New Help for Debugging
	Conclusions

